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Apparent slip at a polymer-polymer interface
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Abstract. We consider a planar interface between strongly-segregated homopolymers subjected to steady
shear in the plane of the interface. We develop a constitutive equation for stress relaxation in an inho-
mogeneous system for chains obeying Rouse dynamics. Using this equation, the interfacial viscosity for
a symmetric blend is found to be ζb2/(6χν0) in agreement with a scaling prediction due to de Gennes,
where ζ is the bead friction coefficient, b is the segment length, ν0 is the segment volume and χ is the
Flory-Huggins interaction parameter driving the phase separation. We generalize our results to asymmetric
blends and describe a phenomenological extension to entangled melts.

PACS. 83.50.Lh Interfacial and free surface flows; slip – 83.80.Es Polymer blends

1 Introduction

There is currently much interest in slip phenomena in
polymers [1–6]. Slip corresponds to a situation in which a
polymeric material responds nonuniformly to an imposed
shear stress, with the strain or rate of strain possessing
spatial variations. Slip might reflect actual decohesion of
a polymer with a solid substrate, e.g. a melt against a
metal die, or simply smooth viscosity variations due to
inhomogeneities in fluid microstructure or composition,
e.g. a solution of non-absorbing polymers against a solid
surface.

Studies on slip at polymer interfaces have generally
been focused on “external” interfaces, such as homopoly-
mer melts against air or solid surfaces. Here we consider a
planar “internal” interface between two incompressible ho-
mopolymers, A and B. When the incompatibility between
the two polymers (characterized by the Flory-Huggins pa-
rameter χ) is high, the system consists of almost pure bulk
homopolymer phases separated by a thin interfacial region
in which A and B mix.

If we shear such a blend parallel to the interface, we
expect that the chain dynamics and segmental interac-
tions in the interfacial region should profoundly affect the
spatial distribution of shear. In particular, since the A-B
interaction is repulsive, the interfacial viscosity ought to
be lower than the bulk viscosity. The interface thus ap-
pears to “slip”.

In the interest of simplicity, we begin by consider-
ing a symmetric blend (i.e. identical friction coefficients
ζA = ζB = ζ, statistical segment lengths bA = bB = b,
segment volumes νA = νB = ν0 and degrees of polymer-
ization NA = NB = N for A and B), where the polymer
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chains obey Rouse dynamics [7]. A scaling result due to de
Gennes [8] predicts that the interfacial viscosity is propor-
tional to 1/χ. We should like to verify this result within
a more quantitative analysis and extend the treatment to
realistic cases of asymmetric blends.

In itself, this problem is relevant to the bulk processing
of multi-phase polymer blends. From a broader perspec-
tive, it is part of a larger class of problems dealing with
the dynamics of strongly inhomogeneous viscoelastic sys-
tems. The field of polymer rheology has historically been
focused on homogeneous systems [7], while newer, “high-
performance” types of polymeric systems such as block
copolymers and blends [9] are manifestly inhomogeneous.
Previous workers [10,11] have considered polymer solu-
tions under shear where elastic stresses drive concentra-
tion fluctuations. They were concerned with deriving the
dynamical equation for the polymer concentration, and
used empirical constitutive relations to describe the poly-
mer stress. Others [12–16] have explored further the cou-
pling between stress and concentration for inhomogeneous
systems, obtaining evolution equations for both the poly-
mer stress and concentration. However, these analyses are
only valid for inhomogeneities weak on the scale of the
chain radius of gyration, Rg.

The inhomogeneity we consider here is both sharp
compared to Rg, and of large amplitude (with respect to
the concentration, which exhibits O(1) variations through
the interface1). We project a Fokker-Planck (FP) equation
for the set of microscopic chain variables to equations of
motion for the stress and concentration variables. We find

1 The chains themselves are not significantly perturbed from
their random walk configurations, so the inhomogeneity with
respect to say, chain stretching, is of small amplitude.
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that while we can derive a completely general concentra-
tion equation, we must resort to a semi-phenomenological
description for the stress relaxation. A necessary feature
of this description is the coupling between gradients in
stress and gradients in concentration. The case of the
sheared blend is then a model problem (in that it is one-
dimensional and the static limit is well-defined) for us to
develop and test these constitutive equations, which we
hope to apply quite generally to other strongly inhomoge-
neous systems.

This paper is organized as follows. In Section 2 we re-
capitulate the de Gennes scaling argument to which much
of the rest of the paper is devoted to examining. Section
3 presents the statics of the blend due to Helfand and
Tagami [17]. We derive the concentration and stress evo-
lution equations in Sections 4 and 5, which we go on to
apply to the symmetric sheared blend in Section 6 and
consequently solve for the blend viscosity. We construct
a simple physical model to explain these results in Sec-
tion 7. This analysis is generalized to asymmetric blends
in Section 8. In Section 9 we show how our formalism may
be phenomenologically extended to entangled melts. We
conclude in Section 10 with a discussion of extensions and
related problems.

2 A scaling argument for the interfacial
viscosity

Let us first consider a segregated, unentangled homopoly-
mer blend at equilibrium, where the interfacial width aI

is large compared to the monomer length b, yet small
compared to the radius of gyration of the chains, Rg ∼
b(N/6)1/2. The interface consists mostly of loops of mo-
nomers that weave back and forth across the interface,
and contains very few chain ends. A loop of s-monomers
of A venturing into the pure B phase gains kBT (which
we set to unity) in entropy, offset by an enthalpic cost χs.
The average loop length s∗ then scales as 1/χ. Assum-
ing Gaussian statistics for the loops, the interfacial width
aI ∼ bs∗1/2 ∼ b/χ1/2. (Thus in order for b� aI, we must
have χ� 1, and aI � Rg implies χN � 1).

Now subject such a blend to a simple shear flow. A
homogeneous melt of A or B homopolymers exhibits a
Rouse viscosity η0 ∼ ζb2N/ν0 [7]. De Gennes [8] argues
that the viscosity in the A-B interfacial region is also given
by a Rouse formula, but with N replaced by the average
loop length, so that ηi ∼ ζb2s∗/ν0 ∼ ζb2/χν0.

It is not obvious to us why this formula should hold.
While clearly the only scale in the interface is the loop
length, one might imagine that stress relaxation of the
loops in the interface is communicated to the rest of the
chain in the bulk. In this paper we examine whether this
scaling result for the interfacial viscosity is borne out by
a more quantitative analysis.
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Fig. 1. Schematic showing the shear orientation for a strongly
segregated blend, and the extrapolation length le.

3 The equilibrium interface

We briefly review the results of a mean-field theory by
Helfand and Tagami [17] for the static interface. Figure 1
shows the co-ordinate system we shall use: the dividing
surface between the homopolymers is at y = 0, and the
A and B monomer volume fractions (φA, φB) attain their
bulk values of unity at y = +∞,−∞ respectively. The
propagatorGA(y, y′, s) (the probability density for a type-
A chain of s-monomers to find itself at y′ having started
at y), becomes independent of the monomer-index s in
the limit that the interface is sharp. This is the so-called
“ground-state” approximation (see for example [18]). We

define QA(y) =
∫

dy′GA(y, y′, s) = φ
1/2
A (y) which satisfies

the equation

0 =
b2

6

∂2QA

∂y2
− UA(y)QA. (3.1)

The potential UA(y) is written as χφB(y) + µ(y): the first
term accounts for the repulsive interaction between A and
B monomers, the second maintains melt incompressibility.
An analogous equation for QB(y) together with the in-
compressibility condition φA(y) + φB(y) = 1, then forms
a closed equation set that may be solved to give the un-
known “pressure” field µ(y). The following results are ob-
tained:

φA(y) =
exp[4y/aI]

1 + exp[4y/aI]
(3.2)

aI =
2b
√

6χ
(3.3)

UA(y) = χφB(1− 3φA). (3.4)

4 A constitutive equation for the stress

To study the dynamics of an inhomogeneous system, we
shall adopt a mean-field picture and consider a single chain
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in a potential U(r, t). [For notational simplicity we tem-
porarily suppress the species labels.] We project the FP
equation for the probability distribution ψ({R}, t) of the
set of microscopic chain variables {R} for an A chain, to
equations for the two collective variables of interest: the
monomer density and stress.

We begin with the FP equation for an A chain

∂ψ({R}, t)

∂t
=

∫ N

0

ds
δ

δR(s)

1

ζ

[
δ

δR(s)
+

δH

δR(s)

]
ψ({R}, t)

−

∫ N

0

ds
δ

δR(s)
· v(R(s), t)ψ({R}, t) (4.1)

where v(R(s), t) is an external velocity field imposed on
the system, assumed to be divergence-free (since the poly-
mer melt is incompressible), and is determined such that
the total shear stress is uniform. The time- and space-
dependent Hamiltonian is defined by

H({R}, t) =
3

2b2

∫ N

0

ds

[
∂R(s)

∂s

]2

+

∫ N

0

ds U(R(s), t) (4.2)

where the first term is due to chain stretching, and the sec-
ond explicitly includes the system inhomogeneity through
the external potential.

The volume fraction of A-monomers is defined as

φ(r) = Nν0

∫ N

0

ds

∫
D{R}ψ{R, t}δ(r−R(s)) (4.3)

where N is the number of A chains in the system. The
stress supported by A-chains is defined by [7]

σij(r) = N
3

b2

×

∫ N

0

ds

∫
D{R}ψ({R}, t)Ṙi(s)Ṙj(s)δ(r−R(s)) (4.4)

where the i−jth component of the stress tensor σ is given
by σij , and dots indicate derivatives with respect to s.

Multiplying equation (4.1) by δ(r−R(s)) and integrat-

ing over
∫N

0
ds
∫
D{R} gives the concentration equation.

After several integrations by parts we get

∂φ

∂t
= −∇ · J =− v ·∇φ+

1

ζ
∇ · (φ∇U)

+
1

ζ
∇2φ−

ν0

ζ
∇∇ : σ (4.5)

where J is the concentration flux. [Note that the bound-
ary terms vanish for {R} integrations because configu-
rations that involve the chain being completely extended
have very low probability, and for s-integrations because
there is no tension on free chain ends.]

The first term in equation (4.5) is the explicit coupling
of the flow-field to the concentration. The next term is due
to the external potential; the third term arises from the
Brownian force and the last term describes the effects of
the chain elastic forces.

At equilibrium (i.e. in the absence of flow, v = 0) the
concentration flux must be zero

φ∇U =∇ · (σν0 − δφ) (4.6)

(where δ is the unit tensor) showing simply that the elas-
tic forces balance the potential forces. This equation thus
provides a condition on what the stress must reduce to
in equilibrium, which we shall use shortly. We may also
express equation (4.6) as φ∇U = ν0∇ ·Σ, where Σ is the
deviatoric stress i.e. the difference between the stress and
its value in the absence of any external fields:

Σ = σ − δφ/ν0. (4.7)

By a similar procedure, we obtain a constitutive equation
for the stress (multiplying by Ṙi(s)Ṙj(s)δ(r − R(s)) in-
stead)

∂tσij = −vk∇kσij + (∇kvi)σkj + σki∇kvj

+
1

ζ
∇k(∇kUσij)−

1

ζ
(∇i∇kU)σkj

−
1

ζ
(∇j∇kU)σki + {NS}ij . (4.8)

Here the first and second lines arise from the flow-field
and external potential, respectively. By {NS}ij we wish
to denote the terms that contribute to the stress relaxation
due to the noise and stretching. Formally these are written
as

{NS}ij =
1

ζ
∇2σij

+
1

ζ

(
3

b2

)[
−2

∫
ds〈R̈iR̈jδ(r−R(s))〉

−2∇k

∫
ds〈ṘiṘjR̈kδ(r−R(s))〉

+∇k∇l

∫
ds〈ṘiṘjṘkṘlδ(r−R(s))〉

]
(4.9)

where 〈·〉 denotes the non-equilibrium average∫
D{R}ψ{R}(·). Since the averages above contain

terms higher order than ṘiṘj , they prove to be difficult
to calculate exactly.

One approach to evaluating these averages, under weak
shear conditions, is to make the local equilibrium approx-
imation. This is a scheme developed by Kawasaki and
Sekimoto [19] where a set of hydrodynamic variables (in
this case the monomer density and the stress) are assumed
to be the only slow variables. The microscopic variables
consequently relax quickly to their local equilibrium val-
ues, such that the hydrodynamic variables take on certain
constrained values. For example, keeping the stress and
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concentration as the slow variables leads to the following
stress evolution equation

∂σij(r)

∂t
=−

∫
dr′Λσσijkl(rr

′)
∂H

∂σkl(r′)

−

∫
dr′Λσφ(rr′)

∂H

∂φ(r′)
(4.10)

where the Λpq(rr′)’s constitute a matrix of projected
Onsager coefficients and are defined as

Λpq(rr′) = 〈
δp̂(r)

δR
· Λ̂(R) ·

δq̂(r′)

δR
〉{p,q}. (4.11)

Here Λ̂(R) is the microscopic matrix of kinetic coefficients,
and is equal to (1/ζ)δ for Rouse chains. The hatted quanti-
ties are microscopic densities (here, the concentration and
stress), and the average is now an equilibrium average with
p̂ and q̂ constrained to be p and q respectively. Performing
this procedure yields equations for the monomer density
and stress identical to equations (4.5, 4.8), except that
the non-equilibrium averages are replaced by constrained
equilibrium averages.

Thus it is clear that within a local equilibrium approx-
imation, the noise-stretch terms {NS}ij in equation (4.8)
can be expressed as functionals of σij and φ. In the next
section, we shall use this fact to guess the form of these
terms.

5 An approximate stress constitutive equation

Let us construct an approximation for the noise and
stretching terms in equation (4.8). Our first observation
is that at equilibrium, these terms in equation (4.8) must
exactly cancel the potential terms, i.e. the U -dependent
terms. For a sharp interface, U is explicitly2 O(χ), with
each derivative contributing a factor of 1/aI ∼

√
χ, so

that all three potential terms are O(χ2). Furthermore, by
inspection of equation (4.6), it is evident that

σ = (φ/ν0)δ +O(χ). (5.1)

Thus, at leading order (for χ � 1), the potential terms
can be transformed by setting σij ≈ (φ/ν0)δij and ∇iU ≈
(ν0φ

−1)∇kΣik, into terms involving only φ,∇φ and gra-
dients of Σ. Since at equilibrium these terms must cancel
{NS}ij , they can correspond to −{NS}ij . To this end we
write

{NS}ij ≈ −
6

ζRg
2Σij +

1

ζ
[∇i∇jΣjk +∇j∇kΣik

− δij∇k∇lΣkl]−
1

ζφ
[∇iφ∇kΣjk +∇jφ∇kΣik]. (5.2)

2 Of course the results of Section 3 only apply to a one-
dimensional interface, but the scaling results are easily gen-
eralized to higher dimensions. The three dimensional analog
of equation (3.4) is 0 = (b2/6)∇2Q − U(r)Q. Recall that
U(r) = χφA(r) + µ(r), so U(r) is O(χ) (since the potential
that maintains incompressibility is of the same order as the A-
B interaction potential). Balancing the potential term against
the gradient terms gives 1/a2

I ∼ O(χ).

Note that the first term is not obtained by the proce-
dure outlined above3, but was added by hand to account
for the long-time stress relaxation in a homogeneous melt.
The numerical factor of Σ is chosen to exactly reproduce
the bulk Rouse viscosity. (See Sect. (6.3) for a compari-
son of our stress constitutive equation with the Maxwell
approximation.)

A few comments about equation (5.2) are in order.
The second group of terms involves two gradients of Σ,
and resembles the term ∇2Σ/ζ derived by other workers
[12–16] (see [20] for a comparison of these different for-
malisms), based on long-wavelength gradient expansions,
i.e. scales larger than Rg. The crucial assumptions made
in these analyses (with the exception of [13]) are that the
chain distribution function may be expanded around the
center of mass, and that the chain may be modelled as a
Hookean dumbell (i.e. only the first Rouse mode is kept).
In contrast, here we assume that χ� 1 and adopt a local
equilibrium approximation.

Notice however, that even when aI ∼ Rg, U is still
O(χ). For aI � b, we must have4 χ � 1, so that the
arguments leading to the derivation of equation (5.2) are
still valid. This means that the tensorial form of the stress
gradient terms in equation (5.2) continues to hold in the
long-wavelength limit. We submit that the structural dif-
ferences between these gradient terms and those in refer-
ences [12–16] are a consequence of the dumbell approxi-
mation and localization of stress at the center of mass in
these earlier works.

The terms involving ∇φ and ∇Σ describe the cou-
pling between stress and concentration gradients in an
inhomogeneous system. (Note that these terms are ab-
sent in the stress constitutive equations of references
[12–16], even though they are in principle of the same
order, even in the long-wavelength limit.) Equation (5.2)
shows that stress gradients can still exist in the absence
of concentration gradients. As an example of such a situ-
ation, we might imagine preparing an initial condition of
non-uniform chain stretching in a one-phase melt, and ask
how the stress relaxes in this case.

We have neglected higher order gradients in Σ and
φ, which is a good approximation in the typical situa-
tion when χ� 1. (However, there may be other inhomo-
geneous systems where these higher order terms become
important. Also, since Eq. (5.2) is derived using a local
equilibrium criterion, in principle other terms may appear
at high shear rates. We shall show in Sect. 6.2 that Eq.
(5.2) also holds far from equilibrium.)

In closing this section, we summarize our approximate
constitutive equation for a Rouse chain in an external

3 At equilibrium, this term is (1/χN) times smaller than the
other terms and may be dropped.

4 When aI ∼ Rg however we may no longer use the ground-
state approximation.
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potential:

∂tσij = −vk∇kσij + (∇kvi)σkj + σki∇kvj

+
1

ζ
∇k(∇kUσij)−

1

ζ
(∇i∇kU)σkj −

1

ζ
(∇j∇kU)σki

+
6

ζRg
2Σij +

1

ζ
[∇i∇kΣjk +∇j∇kΣik − δij∇k∇lΣkl]

−
1

ζφ
[∇iφ∇kΣjk +∇jφ∇kΣik]. (5.3)

6 Interfacial viscosity of a symmetric blend

6.1 General equations for the one-dimensional case

We now apply the results of the previous section directly
to the sheared blend. The position-dependent viscosity of
the blend is defined as η(y) = σ0/κ(y), where σ0 is the
applied stress and κ(y) = ∂vx/∂y is the shear rate, with
vx denoting the x-component of the velocity.

To determine the shear rate, in general we must solve
a set of coupled differential equations for the stress and
density fields. At steady-state, the xy-component of the
equation for the A-stress (from Eq. (5.3)) is given by

0 = κ(y)σyy +
1

ζ
U ′σ′xy −

6

ζRg
2 σxy

−
1

ζ

φ′

φ
σ′xy +

1

ζ
σ′′xy. (6.1)

Primes indicate differentiation with respect to y. The cor-
responding equation for σyy is

0 =
1

ζ

[
U ′σ′yy−U

′′σyy −
6

R2
g

Σyy − 2
φ′

φ
Σ′yy+Σ′′yy

]
. (6.2)

The A-density equation from (4.5) is

0 =
1

ζ
[(−φU ′) + (σyy

′ν0 − φ
′)]′. (6.3)

There are three analogous equations for the B-species.
These equations must be solved under the constraints

that the total monomer density and shear stress are
maintained constant everywhere, i.e. φA + φB = 1
and σA,xy + σB,xy = σ0, respectively. Far away from
the interface, the system consists of bulk homopolymer
phases i.e. φA(+∞) = φB(−∞) = 1 and σA,xy(+∞) =
σB,xy(−∞) = σ0, and we recover the Rouse viscosity so

that κ(−∞) = κ(+∞) = κ0 = 6σ0ν0/ζRg
2 [7]. Alto-

gether this gives eight equations for the eight unknowns
σA,xy, σB,xy, σA,yy, σB,yy , φA, φB, κ(y) and µ(y) (where we
recall that µ(y) is the part of U(y) common to A and B
that maintains incompressibility).

6.2 Solution of coupled equations

Integrating equation (6.3) over y with the boundary con-
ditions that at y → −∞,+∞ all gradients in U, φ and σyy

vanish gives

0 = −(φU ′) + (ν0σyy
′ − φ′) (6.4)

which is identical with the equilibrium condition, equa-
tion (4.6). Integrating this equation a second time gives
ν0σyy = φ+

∫ y
−∞ dy′φU ′ (where we have used the bound-

ary conditions σyy = 0 and φ = 0 at y = −∞), which
may be used to eliminate σyy from equation (6.1). This
xy-stress equation may then be solved for the shear rate
under the constraint of uniform total shear stress.

Notice that the equilibrium concentration and poten-
tial profile given by equations (3.2) and (3.4) respectively,
are steady-state solutions to the equation set of the pre-
vious section at all shear rates. This is a consequence of
the absence of explicit coupling to the flow-field in the yy-
stress equation. [This is a peculiarity of the Rouse model,
for which the second-normal stress difference [7] in a ho-
mogeneous melt is always zero (and therefore independent
of the shear rate), even at high shear rates.] This supports
the application of equation (5.2) far from equilibrium be-
cause the concentration profile takes its equilibrium value
at all shear rates, so that ∇ ∼ (1/χ) and higher order
gradient terms are negligible for χ� 1.

Overall, we see that equations (6.3, 6.2) for the A
and B species, together with the constant density con-
straint give five equations for the five unknowns σyy,A,
σyy,B, φA, φB, µ(y), which are decoupled from the shear
stress equations and constant shear stress constraint.
Thus, neglecting terms of O(χ), we can set σyy ≈ φ/ν0

in equation (6.1).
We see from equation (6.1) that the term coupling

stress gradients and concentration gradients comes into
play only on the scale of the interface (since φ′ ∼ 1/aI).
The stress-gradient term persists up to a distance on
the order of the radius of gyration of the chain, but
this provides only exponentially small corrections to the
stress profile on the scale of the interface. Beyond Rg,
the bulk homopolymer dynamics are recovered. Thus, for
y � aI the dominant balance in equation (6.1) is between
the first and third terms, which gives the Rouse result
η0 ∼ ζR2

g/ν0. Instead, for y ∼ aI, the balance is between
the flow term and the two gradient terms, which gives
ηi ∼ ζa2

I /ν0. Thus, we see that the scaling ideas of [8] are
in fact borne out.

Let us next rewrite equation (6.1) in terms of a new
variable TA = σA,xy − σ0φA

0 = g(y)−
6

ζRg
2TA −

1

ζ

φA
′

φA
TA
′ +

1

ζ
TA
′′ (6.5)

where the inhomogeneous term is given by

g(y) = (κ− κ0)
φA

ν0
−
σ0

ζ

[
(φA

′)2

φA
− φA

′′

]
(6.6)

and φA is given by equation (3.2). (Note that the potential
term may be dropped because it is a factor of χ smaller
than the other terms). The boundary conditions are TA →
0, TB → 0 for y → ∞, and TA → 0, TB → 0 for y → −∞
(TB being defined similarly to TA).
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We now construct a Green’s functionGA(y, a) for equation
(6.5) so that

TA(y) = −

∫ ∞
−∞

da g(a)GA(y, a). (6.7)

The condition of constant shear stress is then given by

0 = TA(y) + TB(y)

=

∫ ∞
−∞

da g(a)[GA(y, a) +GB(y,−a)] (6.8)

where we have defined a similar Green’s function for B,
and used the symmetry φB(y) = φA(−y) in deriving equa-
tion (6.8). This equation has the solution g(a) = 0 so that

κ(y) = κ0 +
σ0ν0

ζ

(
4

aI

)2

φAφB. (6.9)

This means that TA(y) = 0, TB(y) = 0, so that σA,xy =
σ0φA (and similarly for B), i.e. that the stress supported
by the A-chains is directly proportional to the concentra-
tion of A-chains. However this simple result does not carry
over to the non-symmetric blend (see Sect. 8). The blend
viscosity is thus given by

η(y) =
σ0

κ0 +
σ0ν0

ζ

(
4

aI

)2

φAφB

=
ζa2

I

ν0

6

(
aI

Rg

)2

+ 42φAφBν0

(6.10)

which reduces to the Rouse viscosity in the bulk, and gives
in the interface

ηi(y) ≈
(aI

4

)2 ζ

φAφBν0
(6.11)

The characteristic scale for the interfacial viscosity is set
at y = 0 to be ζb2/(6χν0).

6.3 Comparison to the Maxwell model

We should point out an important difference between
our constitutive equation and the Maxwell model [21], a
widely used empirical constitutive equation for homoge-
neous systems

Dσ

Dt
− (∇v)T · σ − σ · ∇v +

1

τ
(σ −Geδ) = 0 (6.12)

where D/Dt = ∂/∂t+ v ·∇ is the convected time deriva-
tive, τ is the rheological relaxation time and Ge is the
shear modulus. For the Rouse model, the longest relax-
ation time is given by τ ∼ N2 and Ge ∼ φ/N [7]. For a
steady simple shear flow, the xy-component of equation
(6.12) is

0 = κσyy −
1

τ
σxy. (6.13)

The yy-component of the stress equation gives σyy = Ge,
which upon substituting into equation (6.13) gives the
bulk Rouse viscosity ∼ N . Notice that the coefficient of
the σxy term in the Maxwell model is 1/N times smaller
than the coefficient we have used in equation (6.1). This
is a consequence of the fact that we take the homoge-
neous equilibrium isotropic stress to be proportional to φ,
whereas the Maxwell model takes it to be proportional
to φ/N . On physical grounds, one does not expect the
isotropic stress to depend on the length of the polymer
chains. Indeed, the N -dependence of the isotropic stress
in the Maxwell model is an artifact of truncating the spec-
trum of relaxation times.

6.4 Apparent blend viscosity

Let us now define a quantity called the “extrapolation
length” [8], which is a measure of the deviation of the
interfacial velocity from the bulk linear velocity profile.
Integrating equation (6.9) for the shear rate gives the ve-
locity profile

vx = κ0y +
ν0σ0

ζ

4

aI

[
φA −

1

2

]
. (6.14)

The extrapolation length, le, is given by the value of y
where vx extrapolates back to zero (see Fig. 1). This is
given by the outer limit of equation (6.14), obtained by
replacing φA(y)→ 1. For the symmetric Rouse blend, we
find

|le| =
R2

g

3 aI
=

√
χ

6

R2
g

b

∼ aI
η0

ηi
· (6.15)

For a system of finite size L, with an interface present, the
apparent shear rate is given by (see Fig. 2)

κapp =
∆v

L
= κ0

[
1 +

2le
L

]
. (6.16)

The apparent viscosity is then

ηapp =
η0[

1 +
2le
L

] · (6.17)

The interface then only makes itself felt in terms of the
rheological properties if le � L. For χ ≈ 0.1, b ≈ 3 Å,
N ≈ 100, we get an extrapolation length on the order of
Angstroms. For a bulk blend with a single interface, the
interfacial slip does not significantly affect the measured
viscosity, since the system size is usually many times the
extrapolation length.

However, for multi-layered system like laminates, the
layer size can fall below micron scales. (The apparent vis-
cosity of a laminate is given by Eq. (6.17) because both
the “velocity jump” and the system size are linear in the
number of layers.) A more remarkable case is an entangled
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y

vx

∆v

L

Fig. 2. The apparent viscosity of the blend is given by the slope
of the dotted line, while the slope of the solid lines reflects the
bulk viscosity. The “velocity” jump is denoted by ∆v, and the
system size by L.

melt where Rouse-like friction dominates in the interface
(see Sect. 9). Here, the extrapolation length is much larger
than that for the Rouse melt (since η0 in Eq. (6.15) is re-
placed by the viscosity of an entangled melt). For multi-
layered systems like laminates where the layer size can
fall below micron scales, this extrapolation length can be
many times the layer size, so that the apparent viscos-
ity can be significantly lower than the homopolymer bulk
viscosity.

7 A “cartoon” for explaining the interfacial
viscosity

Now we use the results of the previous section to give a
simple physical picture of the dynamics of a blend un-
der shear. First, we consider the case of a bulk Rouse
melt, which we then compare with a segregated symmet-
ric blend.

7.1 Bulk Rouse viscosity

Consider a Rouse melt under simple steady shear (see
Fig. 3), such that vx = κ0y. Let us focus our attention
on a chain with its center of mass (c.o.m.) at y = 0. On
average, this chain is stationary i.e. vc.o.m = 0. There
is thus a drag along the entire length of the chain, due
to the difference between the velocity of the surrounding
fluid (made up of all the other chains in the melt) and the
chain velocity. Since there is no hydrodynamic interaction
between monomers, the drag coefficient for a length of n
monomers is simply nζ. Thus the drag on the upper half
of the chain is

Fdrag ∼ x̂(κ0Rg − vc.o.m.)

(
Nζ

2

)
. (7.1)

Rg y
c.o.m.

vx

Fig. 3. A typical chain in a homogeneous Rouse melt under
shear, is subjected to a drag force from the surrounding chains
along its entire length.

The drag on the lower half of the chain is equal and op-
posite, so the tension on the monomers crossing the y = 0
plane is

τ ∼ κ0RgNζ. (7.2)

The number of chains per unit area within Rg of the in-
terface is Rg/ν0N . The shear stress is then

σxy ∼ τ(Rg/Nν0) ∼ κ0ζR
2
g/ν0 (7.3)

which gives the Rouse viscosity

η =
σxy

κ0
∼ ζR2

g/ν0. (7.4)

7.2 Interfacial viscosity

As we discussed in Section 2, the configuration of chains
in the interface of a strongly-segregated blend consists
mostly of loops. This is a fundamentally different picture
from the previous section, because the chain center of mass
is now significantly displaced from the interface symmetry
plane (see Fig. 4). The drag on most of the monomers of
the chain is small, since the chain (moving at the c.o.m. ve-
locity) is simply convected along with the flow. The fluid in
the interface, however, is almost stationary, so that there
is a larger drag on the monomers in the interface (which
are also moving with the velocity of the c.o.m).
Let us write an approximate velocity profile through the
melt as

vx(y) = κiy y ≤ aI

= κiaI + κ0(y − aI) y > aI (7.5)

where we assume the existence of a length scale aI, but do
not say anything a priori about the “interfacial” shear rate
κi. The velocity of the c.o.m. is then vx(Rg) ≈ κiaI+κ0Rg.
A loop in the interface composed of s∗ monomers (see
Fig. 4) is subjected to drag forces from fluid moving at
equal and opposite velocities on either side of the interface
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aI Rg

c.o.m.

v

Fig. 4. Typical configurations of chains in the interface are
loops. Under shear, the drag on chains in the interface, from
the surrounding fluid, is mostly exerted on the monomers of
these loops.

symmetry plane. The drag force on the upper half of the
loop is

f1 ∼ x̂(vi − vc.o.m.)
ζs∗

2
(7.6)

where vi ∼ κiaI. The drag on the lower half of the loop is

f2 ∼ x̂(−vi − vc.o.m.)
ζs∗

2
· (7.7)

The total drag on a loop in the interface is then given by

Fdrag = f1 + f2 ∼ x̂vc.o.m.ζs
∗. (7.8)

Consequently, the tension on a loop is

τ ∼ vc.o.m.ζs
∗ ∼ [κiaI + κ0Rg]ζs∗. (7.9)

Since there are aI/ν0s
∗ loops per area of interface, the

total shear stress is given by

σxy ∼ [κiaI + κ0Rg]ζaI/v0. (7.10)

The interfacial viscosity is therefore

ηi =
σxy

κi
∼
ζaI

2

ν0

[
1 +

κ0

κi

Rg

aI

]
. (7.11)

Since the total shear stress is constant, κiηi ∼ κ0η0, equa-
tion (7.11) can be expressed as an implicit equation for ηi
that may be solved to give

ηi ∼
ζaI

2

ν0

[
1 +O

(
aI

Rg

)]
∼

ζ

χν0
· (7.12)

If we had considered the A-stress instead of the total
stress, the arguments above would be unchanged, except
that the number of loops supporting the stress would vary
as the concentration through the interface. Thus σA ∝ φA,
precisely as we found in Section 6.2.

8 Asymmetric blends

In the case that the homopolymers are not symmetric (i.e.
that they have different degrees of polymerization or fric-
tion coefficients), equation (6.8) must be replaced by

0 =

∫ ∞
−∞

da[S(a, y)κ(a)] + h(y) (8.1)

where

S(a, y) = −
1

σ0ν0
[ζAφAGA(a, y) + ζBφBGB(a, y)] (8.2)

h(y) =

∫ ∞
−∞

{[
ζAφA

κ0,A

σ0ν0
+

(
4

aI

)2

φ2
AφB

]
GA(a, y)

+

[
ζBφB

κ0,B

σ0ν0
+

(
4

aI

)2

φAφ
2
B

]
GB(a, y)

}
(8.3)

where κ0,A = 6σ0ν0/ζAR
2
g,A and κ0,B = 6σ0ν0/ζBR

2
g,B.

(We show how to construct the Green’s functions for the
above equation in Appendix A.) This is an inhomogeneous
Fredholm equation of the first kind that must be solved
numerically for the shear rate κ(y). The discrete form of
the integral equation can be written as a matrix equation

S · κ = h (8.4)

where we use a Gauss-Legendre quadrature scheme to ob-
tain the discretization points for the integration range.
κ(y) may then be easily obtained by inverting the matrix
S.

Figure 5 shows κ(y)/(σ0ν0) for an asymmetric blend
with χ = 0.1, ζA = 1, w = ζA/ζB = 0.5, Rg,A = Rg,B =
9aI. Notice that the peak in the shear rate is shifted over
towards the more easily sheared B-species. We find that
the position of this peak is only a function of w (holding
Rg,A = Rg,B constant), such that f(w) = −f(1/w) due to
symmetry. We also plot TA/σ0 = σxy,A/σ0 − φA for the
same blend in Figure 6, which is now non-zero in contrast
to the symmetric case, so that the A-shear stress no longer
tracks the A-monomer density profile. The “cartoon” of
Section 7.2 requires that the shear rate is symmetrical
around zero (since the A-density variation is not incorpo-
rated precisely), so that it cannot be used to capture these
details of the asymmetric blend.

However, we can generalize the scaling results of Sec-
tion 7.2. Let us write the interfacial viscosity (defined as
the minimum viscosity in the blend) for an asymmetric
blend (with Rg,A = Rg,B) as

ηi ≈ (ζAζB)1/2 aI
2

ν0
F (w) + ηi,sym (8.5)

where ηi,sym is given by equation (6.10), F (w) = F (1/w)
by symmetry, and F (1) = 0. In Figure 7, we plot F (w)
for four blends with different values of Rg/aI. We find
that while F (w) is not a universal function due to a slight
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Fig. 5. κ(y)/(σ0ν0) for an asymmetric blend with χ =
0.1, ζA = 1, w = ζA/ζB = 0.5, Rg,A/aI = Rg,B/aI = 9. The
maximum in the shear rate κ(y) is shifted towards the more
easily sheared B-species.
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Fig. 6. The dimensionless difference, TA(y)/σ0, between the A-
shear stress and A-monomer density profile, for the asymmetric
blend of Figure 5.

dependence on Rg/aI, equation (8.5) is a good approxi-
mation for the interfacial viscosity for aI/Rg � 1. Thus
the extrapolation length shows the same scaling with χ as
the symmetric blend.

Next, consider the case where w = 1 and Rg,A 6= Rg,B.
Notice that for the symmetric blend, the effect of Rg on
the interfacial viscosity comes in through the parameter
(aI/Rg)2 (see Eq. (6.10)), i.e. in the way that the interfa-
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0 0.5 1 1.5 2 2.5 3 3.5 4
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Rg/aI
Rg/aI

9Rg/aI

(ηi-ηi,sym)νo

σo(ζAζB)1/2 aI
2

w

Fig. 7. Normalized interfacial viscosity as a function of the
friction coefficient ratio, w, for fixed Rg/aI, χ = 0.1, ζA = 1.
Here, we show four different values of Rg/aI for which equation
(8.5) is a good approximation.

cial viscosity heals back to the bulk viscosity. This param-
eter is small, but finite, in our numerical work5, so errors
on the order of (aI/Rg)2 are introduced. We expect that
asymmetry in the Rg’s should shift the position and mag-
nitude of the peak in the shear rate, since the interfacial
viscosity must heal back to two different bulk viscosities.
Numerics (with w held fixed) show that varying the ratio
Rg,A/Rg,B has only a slight effect on the shear rate, which
is on the same order as the finite-Rg errors.

We have neglected the concentration dependence of the
friction coefficients in this analysis, which a realistic treat-
ment of an asymmetric blend should necessarily include.
In addition, because of the difference in elasticity and vis-
cosity between the two species, asymmetric blends can
exhibit instabilities under shear [22] due to normal stress
differences between the two phases. Certainly, instabili-
ties due to viscosity and density differences are known for
purely Newtonian phase-separated fluids. Consequently, a
highly asymmetric blend might produce very different dy-
namics experimentally than those considered here. This is
an interesting situation that we leave for future work.

9 Phenomenological extension to the
entangled case

Let us now consider a symmetric entangled blend. There
are two possible cases:
i) where the tube diameter of the entanglement network is

5 There are numerical difficulties associated with using an
integration range much larger than about 9aI, which in turn
limits the chain radius of gyration. However, since gradients in
shear rate and stress do not change significantly beyond aI, this
does not affect the position and magnitude of the maximum
shear rate, or the shape of these curves. We have checked this
by systematically varying the integration range.
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larger than the interfacial width and Rouse friction dom-
inates in the interface, and
ii) where the tube diameter is smaller than the interfacial
width so that entanglement dynamics come into play in
the interface.

We use an argument due to de Gennes [8] to distin-
guish between these two regimes. As we discussed in Sec-
tion 2, the interface consists mostly of loops of length s,
with average length s∗ ∼ 1/χ. We write the probability
distribution of loops as

p(s) =

exp

[
−

∆H

kBT

]
s∗

(9.1)

where ∆H = χskBT . Loops can effectively entangle only if
they are longer than the distance between entanglements,
Ne [7]. We may estimate the fraction of such loops, f as
follows

f =
∞∑
Ne

p(s) ≈ exp[−Neχ] ∝ exp

[
−

(
D

aI

)2
]

(9.2)

where D ∝ N
1/2
e b denotes the tube diameter. Thus Rouse

dynamics dominate for χNe � 1 and entanglement dy-
namics for χNe � 1.

9.1 D� aI: Rouse-like interfacial friction

Here we can use an equation similar to equation (6.1), ex-
cept that we must change the coefficient of the term linear
in the stress to reflect the bulk viscosity of the entangled
melt outside the interface.

0 = κ(y)σyy +
1

ζ
U ′σ′xy −

2

ζRg
2(N/Ne)2

σxy

−
1

ζ

φ′

φ
σ′xy +

1

ζ
σ′′xy. (9.3)

This equation then produces Rouse-like dynamics in the
interface, and we should use the Rouse concentration
equation (4.5) in conjunction with it. Repeating the anal-
ysis of Section 6 we find that the extrapolation length in
this case is

|le| =

√
6χR2

g(N/Ne)
2

2b
(9.4)

which is once more in agreement with the scaling predic-
tion of reference [8]. For χ ≈ 0.1, b ≈ 3 Å, N ≈ 103, Ne ≈
102, we get le ≈ 10 µm, which is considerably larger than
that for the Rouse melt. (Since we are mainly concerned
with investigating the Rouse dynamics in the interface, we
do not attempt to reproduce the non-linear viscoelasticity
of the outer entangled melt in Eq. (9.3). However, we shall
address this point in the next section.)

9.2 D� aI: Reptation-like interfacial friction

We now consider a symmetric blend where the tube diame-
ter is smaller than the interfacial width, so that the chains
are long enough that entanglement effects become signif-
icant, both in the bulk and the interface. In Appendix
B, we derive the concentration equation for an entan-
gled melt, using a two-fluid scheme developed by Doi and
Onuki [23] for Rouse solutions and asymmetric entangled
melts.

∂φ

∂t
= −∇ · (φv) +

1

ζ(N/Ne)
∇ · [φ∇U − ν0∇ · σ] . (9.5)

Notice that this equation has exactly the same form as
the concentration equation for the Rouse melt (Eq. (4.5)),
except that the friction coefficient has been renormalized
by (N/Ne). (The noise term is absent but we shall remedy
that shortly.)

We should point out that the stress σ in equation (9.5)
has a different interpretation from the stress in the Rouse
model. The reptation model [7] focuses on the primitive
chain, for which only N/Ne segments are active in sup-
porting stress. Consequently, the concentration associated
with this reptation stress is the actual concentration di-
vided by Ne. In the absence of any external potential or
flow fields, the reptation stress reduces to an isotropic ten-
sor δφ/ν0, where φ is the renormalized concentration, i.e.
the concentration of entanglement segments. The noise
term is then simply (1/ζ(N/Ne))∇2φ, which is entirely
analogous to that for the Rouse melt. The deviatoric stress
is therefore defined as Σ = σ − δφ/ν0.

Since the form of the concentration equation is identi-
cal to that of the Rouse melt except that the coefficients
are renormalized, we are led to write a stress constitutive
equation having the same form as the Rouse model, but
with different coefficients.

In order to obtain the bulk entanglement viscosity
ζN(N/Ne)

2/2, the coefficient of the Σ term in equation
(6.1) must be 2/ζN(N/Ne)

2. Thus the terms involving
gradients of the stress and the density ought also to gain
a factor of (N/Ne)

2. The potential terms must be renor-
malized in the same way so that the analog of equation
(4.6) is satisfied at equilibrium. The analog of equation
(6.1) for the entangled melt is therefore

0 = κ(y)σyy +
1

ζ

(
N

Ne

)2U
′σ′xy −

2

ζRg
2

(
N

Ne

)2σxy

−
1

ζ

(
N

Ne

)2

φ′

φ
σ′xy +

1

ζ

(
N

Ne

)2σ
′′
xy · (9.6)

Using this model for an entangled symmetric blend,
the characteristic scale of the interfacial viscosity is
ζb2/(6χν0(N/Ne)2), which is the scale-dependent entan-
glement viscosity [8], analogous to the scale-dependent
Rouse viscosity. The extrapolation length in this case is
|le| =

√
6χR2

g/2b and differs from the Rouse extrapola-
tion length only by a prefactor. Of course since our model
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is purely phenomenological, all numerical prefactors are
questionable. In addition, the existence of a character-
istic scale for the interfacial viscosity can only be veri-
fied through a microscopic model. Since the entanglement-
like interfacial viscosity is (N/Ne)2 times larger than the
Rouse-like interfacial viscosity, we see that the interfacial
slip will be markedly different depending on the value of
χNe.

Note that that the reptation model, unlike the Rouse
model, exhibits a non-zero second normal stress difference
[7], so we expect the concentration and stress profiles to
be shear rate dependent (which we did not find for the
case of the Rouse model in Sect. 6).

For homogeneous entangled melts, Larson [22] has pre-
sented a simple constitutive equation (which is a good
approximation to the Doi-Edwards constitutive equation
[7]):

Dσ

Dt
−(∇v)T · σ − σ · ∇v +

2

3Ge
D : σσ

+
1

τd
(σ −Geδ) = 0 (9.7)

where Ge = φ is the shear modulus, τd = N3/Ne is
the disengagement time [7], and 2D = [∇v + (∇v)T]
is the symmetric rate of strain tensor. Notice that equa-
tion (9.7) differs from equation (6.12) only by the term
(2/3Ge)D : σσ = (2/3Ge)Dlkσilσjk, which incorporates
non-linear viscoelastic effects into the bulk melt.

We may similarly adapt the flow terms in our consti-
tutive equation to reflect this non-linearity. We then have
the following equation set for σxy, σyy and φ respectively,
for the A-species:

0 =κ(y)

[
σyy +

1

3φ
(σxxσyy + σ2

xy)

]
+

1

ζ( NNe
)2
U ′σ′xy

−
2

ζRg
2( N
Ne

)2
σxy−

1

ζ( NNe
)2

φ′

φ
σ′xy +

1

ζ( NNe
)2
σ′′xy (9.8)

0 =κ(y)

[
2

3φ
σxyσyy

]
+

1

ζ( NNe
)2

[U ′σ′yy−U
′′σyy]

−
2

ζR2
g( NNe

)2
Σyy−

1

ζ( NNe
)2

2
φ′

φ
Σ′yy+

1

ζ( NNe
)2
Σ′′yy (9.9)

0 =− (φU ′) + (ν0σyy
′ − φ′) (9.10)

which together with a similar set for the B-species must
be solved under the shear stress and density constraints.
An important difference from the Rouse equations of Sec-
tion 6, is that the σyy-equation is now coupled to the
shear stress and shear rate through the term arising from
D : σσ. This equation set is non-trivial to solve even per-
turbatively, since substituting equation (9.10) into equa-
tion (9.9) results in an integro-differential equation.

However, we can ask at what flow strength this addi-
tional coupling becomes significant. From equation (9.9),
this term is important for the bulk dynamics when κ ∼
φN3/Ne. We recall, however, that φ has been normalized

by Ne, i.e. bulk non-linear effects become important for
κτd ∼ 1. In the interface, chain dynamics occur on smaller
scales, so that κτd � χN for the coupling term to come
into play. (We have balanced the coupling term against
the gradient terms in Eq. (9.9) to obtain this result). Since
χN � 1 for a strongly-segregated blend, we see that a sub-
stantial flow strength is needed to cause deviations from
the equilibrium interfacial width and concentration pro-
file.

10 Conclusions

We have developed a constitutive equation for stress relax-
ation in a strongly inhomogeneous polymer melt obeying
Rouse dynamics. This equation is then used to calculate
the viscosity of a symmetric homopolymer blend. We find
the viscosity in the interface is ζb2/(6χν0) in agreement
with the scaling prediction of reference [8]. This treatment
can be extended phenomenologically to the entangled case
to produce a crossover from Rouse friction in the interface
to reptation dynamics in the bulk.

It should be possible to test our prediction for the shear
rate by using tagged particles to visualize velocity pro-
files. A model system might be a blend of deuterated and
undeuterated homopolymers, where the deuteration pro-
vides sufficient incompatibility to cause phase segregation,
without changing the chain mobilities significantly.

A more accessible experimental quantity is the ap-
parent viscosity of the blend. This is given by ηapp =
η0/[1+2le/L], where L is the system size, and le ∼ aIη0/ηi
denotes the extrapolation length (which characterizes the
apparent “velocity jump” due to the presence of the in-
terface). For bulk blends, L is generally larger than le,
and so the apparent viscosity should be close to the bulk
viscosity. In layered entangled systems with Rouse-like in-
terfacial friction, however, the extrapolation length can be
many times the layer size. Experiments [24] on coextruded
laminates of two homopolymers, with a layer thickness of
50 µm, measured an apparent viscosity of ηapp ∼ η0/20.
Here, η0 was the bulk average viscosity of the two ho-
mopolymers, showing that interfacial slip can have re-
markable effects on the flow properties of these structured
systems.

Interfacial slip can also be significant in polymer emul-
sification. For Newtonian emulsions, increasing the viscos-
ity of the inner fluid relative to that of the outer fluid can
cause the drag on a deformable droplet to be that on a
hard sphere [25]. For polymeric fluids, interfacial slip at
the drop surface can reverse this effect when the extrapola-
tion length is many times the droplet size. The addition of
block copolymer to such interfaces subsequently changes
the slip properties.

We have also extended our analysis to asymmetric
blends. In the symmetric blend, inhomogeneity is intro-
duced only through the effects of an external potential.
For asymmetric blends, the difference in elasticity or vis-
cosity between the two components can cause the interface
to become unstable under shear. We have not explored this
intriguing aspect of the problem.
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Appendix A: Constructing the Green’s
function

We show here how to construct a Green’s function for
equation (6.5) using the method of matched asymptotic
expansions. (The following derivation is for the A-species;
we suppress the A-subscript for conciseness. The analysis
for the B-species is entirely analogous).

The Green’s function G(a, y) is the solution to

−
6

R2
g

T −
φ′

φ
T ′ + T ′′ = δ(y − a). (A.1)

In solving the homogeneous equation, we realize that there
are two important regimes: an “inner” regime on the scale
of the interface where the dominant terms of equation
(A.1) are

−
φ′

φ
T ′ + T ′′ = 0 (A.2)

with the solution

Tinner = C1

∫ y

0

φ(x)dx+ C2 (A.3)

and an “outer” region for scales on the order of the chain
radius of gyration. (In this regime the interface “appears”
to be at y = 0.) Here equation (A.1) may be written ap-
proximately as

−
6

Rg
2T + T ′′ = 0. (A.4)

The outer solution is given by

Touter = C3 exp

[√
6y

Rg

]
+ C4 exp

[
−
√

6y

Rg

]
. (A.5)

A uniform solution for T exists if the two solutions have
a common limit in a “matching” regime where aI � y �
Rg. To identify this limit, we take the outer limit of the
inner solution and the inner limit of the outer solution.
For y > 0

y →∞, T+
inner→ C+

1 [
aI

4
ln

1

2
+ y] + C+

2

y → 0, T+
outer → [C+

3 − C
+
4 ]

√
6

Rg
y + [C+

3 + C+
4 ].

The solutions match if C+
1 = (C+

3 −C
+
4 )
√

6/Rg and C+
2 =

C+
3 +C+

4 −C
+
1 (aI/4) ln(1/2). The uniform solution is thus

given by

T+ = C+
3

[
exp

(√
6y

Rg

)
−

√
6

Rg

aI

4
lnφ

]

+ C+
4

[
exp

(
−

√
6y

Rg

)
+

√
6

Rg

aI

4
lnφ

]
. (A.6)

Similarly matching for y < 0

y → −∞, T−inner→ C−1 µ+ C−2

y → 0, T−outer → [C−3 − C
−
4 ]

√
6

Rg
y + [C−3 + C−4 ]

where µ =
∫ −∞

0
φ(x)dx = −(aI/4) ln(1/2), and we iden-

tify C−3 + C−4 = 0, C−1 Γ + C−2 = C−3 + C−4 . The uniform
solution for y < 0 is then

T− = C−1
aI

4
ln[1− φ]

+ C−3

[
exp

(√
6y

Rg

)
+ exp

(
−

√
6y

Rg

)]
. (A.7)

A solution for all y is written as

T = [Af1(y) +Bf2(y)]θ(y) + [Cf3(y) +Df4(y)]θ(−y)
(A.8)

where

θ(y) =

{
1 y > 0
0 y < 0

f1(y) = exp

(√
6y

Rg

)
−

√
6

Rg

aI

4
lnφ (A.9)

f2(y) = exp

(
−

√
6y

Rg

)
+

√
6

Rg

aI

4
lnφ (A.10)

f3(y) =
aI

4
ln[1− φ] (A.11)

f4(y) = exp

(√
6y

Rg

)
+ exp

(
−

√
6y

Rg

)
. (A.12)

To find the Green’s function G(a, y) we must consider
three separate cases
i) a > 0

y < a G(a, y) = A(a)f1(y) +B(a)f2(y)

y > a G(a, y) = [A∗(a)f2(y) +B∗(a)f2(y)]θ(y)

+ [C∗(a)f3(y) +D∗(a)f4(y)]θ(−y). (A.13)

The six constants are determined by requiring that

1) G(a, y) is continuous at y = a,
2) ∂G/∂y has a finite jump discontinuity of magnitude

unity at y = a,
3) G(a,+∞) = 0,
4) G(a,−∞) = 0,
5) G(a, y) is continuous at y = 0 and
6) ∂G/∂y is continuous at y = 0.

ii) a < 0
Here we write

y < a G(a, y) = [A(a)f1(y) +B(a)f2(y)]θ(y)

+[C(a)f3(y) +D(a)f4(y)]θ(−y)

y > a G(a, y) = C∗(a)f3(y) +D∗(a)f4(y). (A.14)
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The constants are determined using the same conditions
as in (i).
iii) a = 0

y < a G(a, y) = A(a)f1(y) +B(a)f2(y)]

y > a G(a, y) = C∗(a)f3(y) +D∗(a)f4(y). (A.15)

In this case we only need to satisfy conditions (1)-(4) given
in (i).

Appendix B: The concentration equation for
an entangled melt

(In this section, we borrow heavily from Ref. [23] to where
the reader is referred for details). Let vA(r, t) and vB(r, t)
denote the velocities of A and B chains respectively, where
the volume average velocity is given by

v = φvA + (1− φ)vB. (B.1)

The conservation equation for the A-polymer mass density
is

∂φ

∂t
= −∇ · (φvA) (B.2)

and similarly for the B-species. To find vA and vB, we shall
use Rayleigh’s variational principle, where the following
“Rayleighian” function is to be minimized with respect to
the two velocities

R =
1

2
W + Ḟ (B.3)

where W is the energy dissipation rate and is Ḟ is the free
energy change in the system.

Each polymer species is assumed to move through a
tube created by the entanglement network, which is itself
moving at a velocity vT. The curvilinear velocity ωi of a
polymer along its own tube is related to its center of mass
velocity as

vi − vT =
ωihi

Li
(B.4)

where hi and Li denote the end-to-end distance and tube
contour length of the i-species respectively. At equilibrium
(Li/hi)

2 = Ni/Ne,i where Ne,i is the number of monomers
between entanglement points. (We shall assume that this
relation continues to hold under weak flow conditions).

The energy dissipation arises from the relative motion
between the polymers and the entanglement network and
is written as

W =

∫
dr[φAζAω

2
A + φBζBω

2
B]. (B.5)

The tube velocity vT is determined by requiring that the
frictional force on the network balance i.e. (1

2 )δW/δvT =0.
Using equations (B.4, B.5) we get

φA
NA

Ne,A
ζA(vA − vT) + φB

NB

Ne,B
ζB(vB − vT) = 0 (B.6)

so that for a symmetric melt the tube velocity reduces to
the volume average velocity.

Substituting equations (B.4, B.6) into equation (B.5),
we obtain for a symmetric blend

W =

∫
dr ζ

N

Ne
φAφB(vA − vB)2. (B.7)

There are two contributions to the free energy change.
The first is due to the external potential (which we recall
involves both the A-B contact energy and a potential to
maintain melt incompressibility) written as

Ḟm =

∫
dr

[
δFm

δφA
φ̇A +

δFm

δφB
φ̇B

]

= −

∫
dr

[
δFm

δφA
∇·(φAvA) +

δFm

δφB
∇·(φBvB)

]
(B.8)

where Fm =
∫

dr[UAφA +UBφB]. The second contribution
arises from the change in the elastic energy of the polymers
which we write as

Ḟe =

∫
dr[σA : ∇vA + σB : ∇vB]. (B.9)

The Rayleighian for the entangled melt is thus given by

R =

∫
dr

[
1

2
ζ
N

Ne
φAφB(vA − vB)2 −

δFm

δφA
∇·(φAvA)

+σA:∇vA + σB:∇vB] . (B.10)

From δR/δvA = 0, equations (B.1, B.2), we obtain the
concentration equation for the A-species

∂φA

∂t
= −∇·(φAv) +

1

ζ(N/Ne)
∇· [φA∇UA −∇·σA] .

(B.11)
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